Journal of Organometallic. Chemistry, 396 (1990) C12–C16 Elsevier Sequoia S.A., Lausanne JOM 21134

Preliminary communication

Electrochemical studies on organometallic compounds

XXXVII *. Unusual paramagnetic bis(silylated cyclopentadienyl)niobium(IV) cationic complexes

Loïc Roullier, Dominique Lucas, Yves Mugnier

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 33), Faculté des Sciences, 6 bd Gabriel, 21000 Dijon (France)

Antonio Antiñolo, Mariano Fajardo and Antonio Otero

Departamento de Quimica Inorganica, Campus Universitario, Universidad de Alcalà de Henarès, 28871 Alcalà de Henarès, Spain

(Received May 9th, 1990)

Abstract

Electrochemical oxidation of Cp'_2NbHL ($Cp' = C_5H_4SiMe_3$, $L = P(OMe)_3$) yields Cp'_2NbHL^+ and $Cp'_2NbL_2^{2+}$, which have been characterized by ESR spectroscopy. These species represent the first niobium(IV) monocationic hydride and dicationic niobiocene complexes.

Transition metal hydrides are important intermediates and catalysts in a variety of reactions [1]. In particular the properties of the niobiocene trihydride $(C_5H_5)_2NbH_3$ have been of much interest for some years, and Tebbe and Parshall demonstrated its activation of carbon-hydrogen bonds in 1971 [2].

Recently, some of us reported the preparation of bissilylated cyclopentadienyl niobium trihydrides, which were characterized as "non-classical" hydrides on the basis of their anomalous ¹H NMR spectra [3]. In continuation of our studies of the reactivity of our niobium hydride complexes, we describe below the characterization by ESR spectroscopy of the bis(silylated cyclopentadienyl)niobium(IV) complexes Cp'_2NbHL^+ and $Cp'_2NbL_2^{2+}$ ($Cp' = C_5H_4SiMe_3$, $L = P(OMe)_3$), produced in solution by electrochemical oxidation of Cp'_2NbHL (1). To the best of our knowledge these species are the first niobium(IV) monocationic hydride and dicationic

^{*} For part XXXVI see ref. 9.

Fig. 1. Cyclic voltammogram of Cp'_2NbHL . Starting potential -1 V. Sweep rate 0.2 V/s.

niobiocene complexes. Only a few niobium(IV) cationic niobiocene compounds have been reported previously [4].

Complex 1 was prepared by a published method [5].

In tetrahydrofuran (THF) with 0.2 M tetrabutylammonium hexafluorophosphate as supporting electrolyte, the voltammogram of 1 on a rotating glassy carbon disc electrode (r.d.e.) exhibits an anodic wave F'_1 at -0.35 V versus an aqueous saturated calomel electrode. Cyclic voltammetry of 1 reveals the peaks F'_1/F_1 (Fig. 1) which show all the characteristics of a reversible system [6].

No drastic modification of the cyclic voltammogram is observed within the temperature range -40 °C to 25 °C at sweep rates varying from 0.01 to 100 V/s. No changes occur when triphenylphosphite is added to the solution. This is a strong indication that the system is reversible [7]. At room temperature controlled potential electrolysis (plateau of wave F'_1) on a carbon gauze electrode consumes approximately one faraday; the r.d.e. voltammogram shows the reduction wave F_1 .

The ESR spectrum (centered at g = 2.006) of the electrolyzed solution is shown in Fig. 2 together with the computer-simulated spectrum. It reveals coupling of the electron to a niobium nucleus ($a_{Nb} = 32.4$ G), a phosphorus nucleus ($a_P = 38$ G) and a proton ($a_H = 10.3$ G). The electrochemical and spectroscopic data are in keeping with the formation of the cationic species Cp'_2NbHL^+ . This complex is relatively stable at room temperature even in the presence of an excess of ligand. However, after heating (60 °C) of the electrolyzed solution, the reduction wave F_1 disappears from the r.d.e. voltammogram and a new oxidation wave F'_2 appears at +0.49 V (Fig. 3b). No signal can be detected by ESR spectroscopy.

Cyclic voltammetry gives a reversible system of peaks F'_2/F_2 . After controlled potential electrolysis at +0.75 V, which consumes 1 F, the reduction wave F_2 is seen in the r.d.e. voltammogram of the electrolyzed solution (Fig. 3c). The ESR spectrum (centered at g = 2.004) of this solution is shown in Fig. 4. The hyperfine structure is due to a coupling of the electron with a niobium nucleus ($a_{Nb} = 78$ G) and two phosphorus nuclei ($a_P = 38.6$ G). Analysis of this ESR spectrum shows that

Fig. 2. (a) ESR spectrum after one-electron oxidation of Cp'₂NbHL; (b) computer simulation.

the unpaired electron is localized mainly on the niobium nucleus and the electron density on the niobium is higher than in the cationic complex Cp'_2NbHL^+ .

The electrochemical and spectroscopic data are consistent with the formation of the dicationic species $Cp'_2NbL_2^{2+}$. To our knowledge, it is the first dicationic complex of Nb(IV).

Fig. 3. (a) Rotating disc electrode voltammograms of Cp'_2NbHL^+ in THF; (b) after heating (60 ° C) in the presence of P(OMe)₃; (c) after one-electron oxidation on a carbon gauze electrode at 0.75 V.

Fig. 4. (a) ESR spectrum of $Cp'_2NbL_2^{2+}$; (b) computer simulation.

The results can be rationalized in terms of the following mechanism:

$Cp'_2NbHL \stackrel{\sim}{\rightleftharpoons} Cp'_2NbHL^+$	F_1'/F_1	(1)
---	------------	-----

$$Cp'_{2}NbHL^{+} \xrightarrow{+L} Cp'_{2}NbL_{2}^{+} + "1/2 H_{2}"$$
 (2)

$$\operatorname{Cp'_2NbL_2}^+ \stackrel{-e}{\rightleftharpoons} \operatorname{Cp'_2NbL_2}^{2+} F'_2/F_2$$
 (3)

Reaction (2), which corresponds to reductive elimination with loss of dihydrogen, is an interesting step. In the case of niobiocene trihydride the abstraction of hydrogen with t-butoxy radical yields the paramagnetic $(C_5H_5)_2NbH_2$, which may play important catalytic roles [8].

We are currently investigating the chemical synthesis of these cationic species and their activity in catalytic reactions.

Acknowledgment. The authors gratefully acknowledge financial support from Action Integrated HF-106 and Mrs. M.T. Compain for her technical assistance.

References

H.D. Kaesz and R.B. Saillant, Chem. Rev., 72 (1972) 231; J. Chatt, Adv. Organomet. Chem., 12 (1974)
I; G.G. Hlatky and R.H. Crabtree, Coord. Chem. Rev., 65 (1985) 1; R.H. Crabtree, Chem. Rev., 85 (1985) 245; M. Ephritikhine, Nouv. J. Chim., 10 (1986) 9; A.E. Shilov (Ed.), Activation of Saturated

Hydrocarbons by Transition Metal Complexes, D. Reidel Publishing Company, Dordrecht, Holland, 1984; R.H. Crabtree and D.G. Hamilton, Adv. Organomet. Chem., 28 (1988) 299.

- 2 F.N. Tebbe and G.W. Parshall, J. Am. Chem. Soc., 93 (1971) 3793; U. Klabunde and G.W. Parshall, ibid., 94 (1972) 9081; F.N. Tebbe, ibid., 95 (1973) 5412; M.D. Curtis, L.G. Bell and W.M. Butler, Organometallics, 4 (1985) 701.
- 3 A. Antinolo, B. Chaudret, G. Commenges, M. Fajardo, F. Jalon, R.H. Morris, A. Otero and C.T. Schweltzer, J. Chem. Soc., Chem. Commun., (1988) 1210.
- 4 J. Arnolt, T.D. Tilley, A.L. Rheingold and S.J. Geib, Organometallics, 6 (1987) 473; A. Fakhr, Y. Mugnier, R. Broussier and B. Gautheron, J. Organomet. Chem., 279 (1985) C15; M. Gomez, J.M. Martinez De Ilarduya and P. Royo, J. Organomet. Chem., 369 (1989) 197.
- 5 A. Antinolo, M. Fajardo, A. Jalon, C. Lopez Mardomingo, A. Otero and C. Sanz-Bernabe, J. Organomet. Chem., 369 (1989) 187.
- 6 P. Delahay, New Instrumental Methods in Electrochemistry, Interscience, New York, 1965, p. 120.
- 7 Y. Mugnier, C. Moïse and E. Laviron, J. Organomet. Chem., 204 (1981) 61; E. Laviron and L. Roullier, J. Electroanal. Chem., 186 (1985) 1.
- 8 I.H. Elson and J.K. Kochi, J. Am. Chem. Soc., 97 (1975) 1262; I.H. Elson, J.K. Kochi, U. Klabunde, L.E. Manzer, G.W. Parshall and F.N. Tebbe, J. Am. Chem. Soc., 96 (1974) 7374.
- 9 Y. Mourad, Y. Mugnier, H.J. Breunig and M. Ates, to be submitted.